

Article

Graph-Based Deep Dive on AI Startup Revenue Composition and Venture Capital Network Effect

Jingyao (Lux) Zhao ^{1,*}

¹ Harvard University, Cambridge, Massachusetts, USA

* Correspondence: Jingyao (Lux) Zhao, Harvard University, Cambridge, Massachusetts, USA

Abstract: Recent years have witnessed unprecedented valuations for AI startups, driven by investor confidence in technological potential rather than established revenue streams. This article provides a conceptual overview of the revenue structures of venture-backed AI startups, focusing on network effects and reciprocal revenue relationships. It also proposes a graph-based deep dive of such a network of N=50 startups and their key investors, showcasing the concrete connectivity through visualization. Network-driven revenue enables rapid early-stage growth by leveraging investor connections and portfolio ecosystems, while reciprocal revenue, in which startups act as each other's clients, accelerates ARR and strengthens ecosystem cohesion. Despite these advantages, both revenue models carry risks, including customer concentration, revenue volatility, and limited market validation, which may affect long-term valuation sustainability. The discussion highlights the importance for entrepreneurs and investors of assessing revenue composition, quality, and scalability, rather than relying solely on headline metrics such as ARR. By balancing early gains from network effects and reciprocal arrangements with broader market adoption, AI startups can enhance growth resilience, and investors can make more informed decisions regarding valuation and long-term potential.

Keywords: AI startups; artificial intelligence; venture capital; network effects; reciprocal revenue; revenue diversification; valuation sustainability; enterprise sales; graph theory

1. Introduction

The past few years have witnessed a remarkable surge in the valuations of AI startups, reflecting strong investor confidence and the perceived transformative potential of artificial intelligence across various industries. Achieving “unicorn” status has become increasingly common, signaling a shift in how the market values early-stage companies. However, a significant number of these highly valued startups remain at relatively early stages of revenue generation or have not yet achieved substantial profitability. This phenomenon raises critical questions about the sustainability of their business models, particularly regarding the sources of their revenue [1]. For application-layer AI companies, there is growing concern that a substantial portion of revenue may stem from investor networks or reciprocal relationships among other portfolio companies, rather than diversified enterprise sales. Understanding these patterns is essential for evaluating the long-term stability and valuation logic of AI startups. This article provides a conceptual overview of venture capital portfolio revenue structures, focusing on network effects, reciprocal revenue relationships, and their implications for revenue sustainability. Drawing upon a graph-based network visualization using Gephi, literature reviews and industry observations, the analysis aims to propose a concrete graph-based framework to such network analyses and future research into startup revenue quality [2].

Received: 08 November 2025

Revised: 02 January 2026

Accepted: 12 January 2026

Published: 17 January 2026

Copyright: © 2026 by the authors.

Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>).

2. Venture Portfolio Network Effect & Reciprocal Revenue Relationships

2.1. Network Effects in Venture Capital

Venture capital (VC) investment has long been acknowledged as a key driver not only for providing financial support but also for enhancing strategic growth opportunities for early-stage companies. Among the various forms of value that VC firms offer, network effects stand out as particularly significant in shaping the revenue and market trajectory of portfolio companies [3]. Network effects in the context of venture capital refer to the advantages that startups gain by being embedded within a larger ecosystem of companies, investors, and strategic partners associated with the same venture firm. Through these networks, startups can access go-to-market (GTM) resources, potential clients, partnerships, and industry expertise that are often difficult to obtain independently, especially for nascent companies without established brand recognition.

One of the primary mechanisms through which network effects operate is the facilitation of early customer acquisition. Startups that share investors with more established companies can leverage these relationships to gain credibility and trust in the eyes of potential clients [4]. This can significantly accelerate revenue generation in the early stages, when market penetration is often slow and customer acquisition costs are high. For example, if a startup receives backing from a well-known VC that already has several successful portfolio companies in related sectors, potential customers may perceive the startup as lower-risk and more reliable, thereby increasing the likelihood of adoption. In this way, the network effect functions not merely as a channel for introductions but as a form of market signaling that reinforces the perceived value and legitimacy of the startup.

Beyond customer acquisition, network effects can also enhance strategic partnerships, collaboration opportunities, and knowledge transfer among portfolio companies. Startups can share best practices, learn from the operational experience of others in the network, and even identify complementary business models or technology integrations. Such interactions often create a feedback loop in which the success of one portfolio company positively influences others, thereby amplifying the overall value of the venture ecosystem [5]. Moreover, these network benefits are not limited to revenue alone; they can contribute to talent acquisition, investor confidence, and market positioning, all of which play a critical role in the long-term growth and valuation of early-stage companies.

However, it is important to consider the potential limitations and risks associated with reliance on network-driven revenue. While network effects can accelerate early growth, they may also introduce concentration risk if a substantial portion of revenue depends on connections within the VC ecosystem rather than broad-based market adoption. Startups that rely heavily on investor networks for client acquisition may experience growth volatility if those networks become saturated or if portfolio relationships change [6]. Additionally, revenue derived primarily through network effects may not always translate into sustainable long-term profitability, as it may lack the diversified customer base and market validation that organic sales through traditional channels provide.

In conclusion, network effects remain a critical component of venture capital's value proposition, offering startups access to early customers, partnerships, and strategic knowledge that can accelerate growth and support higher valuations. Nevertheless, understanding the balance between network-driven revenue and market-driven revenue is essential for assessing the sustainability of these growth trajectories. For venture-backed startups, leveraging network effects effectively requires careful management to ensure that short-term gains do not obscure long-term risks, particularly in terms of revenue diversification, market stability, and the resilience of valuation in changing market conditions [7].

2.2. Concept of Reciprocal Revenue

Reciprocal revenue relationships represent a distinctive feature of the business models observed in many technology-driven startups, particularly within the application-layer software sector. At its core, reciprocal revenue occurs when companies engage in mutually beneficial customer relationships, effectively serving as each other's clients. This arrangement allows startups to generate early revenue streams in a controlled and predictable manner, often bypassing some of the market frictions that typically impede early-stage customer acquisition. The practice is particularly prevalent among AI and enterprise software startups, where product adoption can be closely tied to specialized use cases, integration requirements, or technical compatibility with other emerging technologies. By becoming each other's customers, startups not only secure immediate revenue but also gain access to valuable feedback, co-development opportunities, and practical validation of their offerings [8].

The concept of reciprocal revenue is closely tied to the dynamics of startup ecosystems. In early-stage ventures, building a robust and diversified customer base can be both costly and time-consuming. Traditional sales cycles may require extensive marketing, outreach, and proof-of-concept deployments before significant revenue materializes. Reciprocal revenue arrangements provide an alternative pathway, leveraging the proximity and shared interests of complementary startups. This can lead to accelerated revenue recognition, reduced customer acquisition costs, and early operational insights that are critical for refining product-market fit. Additionally, reciprocal arrangements often strengthen inter-company networks, creating a more tightly knit ecosystem in which startups collectively enhance each other's credibility and market visibility [9].

However, while reciprocal revenue can offer strategic advantages in early growth stages, it also introduces important considerations for revenue quality and valuation. Revenue derived primarily through reciprocal relationships may not always reflect true market demand or scalability potential [10]. Unlike conventional enterprise sales secured through requests for proposals (RFPs) or broad customer outreach, reciprocal revenue often originates from a limited network of interconnected companies, raising questions about the sustainability and diversification of the revenue base. For investors and market observers, distinguishing between revenue that is ecosystem-driven versus revenue that is market-driven becomes crucial when assessing the robustness of a startup's valuation.

Moreover, the prevalence of reciprocal revenue can influence competitive dynamics within the ecosystem. While such relationships facilitate cooperation and mutual growth, they may also create dependencies that limit strategic flexibility. Startups that overly rely on reciprocal arrangements may face challenges in expanding beyond the network, particularly if the initial revenue partners evolve into competitors or reduce engagement over time. Consequently, understanding the structure, scope, and limitations of reciprocal revenue is essential for both entrepreneurs and investors seeking to evaluate early-stage startups, as it provides insights into revenue sustainability, market positioning, and the potential risks embedded in interconnected business arrangements [11].

Reciprocal revenue relationships represent a common and strategically significant mechanism for generating early-stage revenue among technology-focused startups, particularly in application-layer software. While they offer clear benefits in accelerating adoption, lowering acquisition costs, and strengthening ecosystem cohesion, they also necessitate careful consideration of revenue quality, diversification, and long-term valuation implications. Recognizing the balance between network-driven and market-driven revenue remains critical for assessing the growth trajectory and financial resilience of early-stage ventures.

3. Network Analysis: A Case Study of 50 Silicon Valley VC-Backed Startups

In this section, I propose a network-based approach for an illustrative closer look at the above two types of effects in early stage startup ecosystem.

3.1. Methodology

First, we select N=50 recently funded AI startups ranging from legal tech, customer service agent, voice AI, video generation, etc. From this list, we trace back to N=14 key venture capital investors who appear frequently on these startups' term sheets. These startups and key investors constitute the "nodes" of our network, as shown in Table 1.

Table 1. List of Startups and VCs as nodes of network graph.

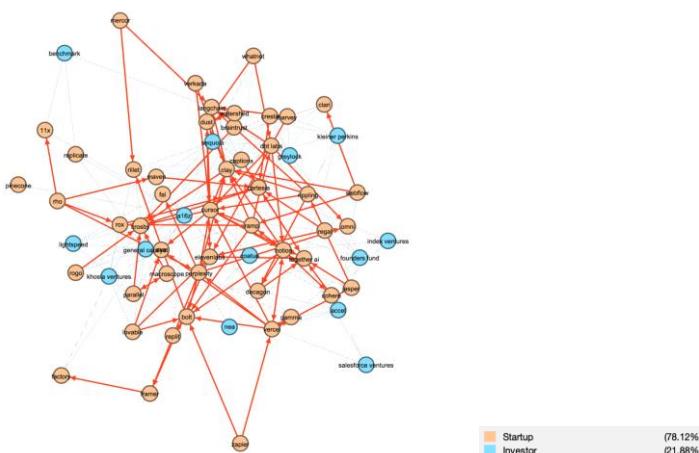
Id	Label	Type	Id	Label	Type	Id	Label	Type	Id	Label	Type
s1	11x	Startups17	exa	Startups33	pinecone	Startups49	whatnot	Startup			
s2	bolt	Startups18	factory	Startups34	poolside	Startups50	zapier	Startup			
s3	braintrust	Startups19	fal	Startups35	ramp	Startup i1	sequoia	Investor			
s4	captions	Startups20	framer	Startups36	regal	Startup i2	a16z	Investor			
s5	cartesia	Startups21	gamma	Startups37	replicate	Startup i3	benchmark	Investor			
s6	clari	Startups22	harvey	Startups38	replit	Startup i4	lightspeed	Investor			
s7	clay	Startups23	jasper	Startups39	rho	Startup i5	coatue	Investor			
s8	cohere	Startups24	langchain	Startups40	rillet	Startup i6	founders fund	Investor			
s9	cresta	Startups25	lovable	Startups41	rippling	Startup i7	index ventures	Investor			
s10	crosby	Startups26	macroscope	Startups42	rogo	Startup i8	greylock	Investor			
s11	cursor	Startups27	maven	Startups43	rox	Startup i9	kleiner perkins	Investor			
s12	dbt labs	Startups28	mercor	Startups44	together ai	Startup i10	nea	Investor			
s13	decagon	Startups29	notion	Startups45	vercel	Startup i11	salesforce ventures	Investor			
s14	dust	Startups30	omni	Startups46	verkada	Startup i12	general catalyst	Investor			
s15	eightfold	Startups31	parallel	Startups47	watershed	Startup i13	khosla ventures	Investor			
s16	elevenlabs	Startups32	perplexity	Startups48	webflow	Startup i14	accel	Investor			

Then, we define three types of "edges," or relationships between each pair of nodes:

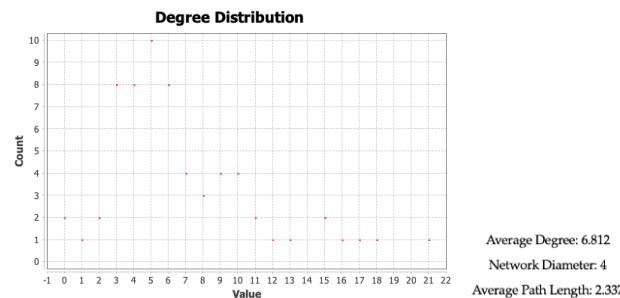
- 1) Customer (directed): represents "A is a customer of B," based on logo on company websites and publicly available data;
- 2) Investor (directed): represents "C is an investor in A," based on publicly available fundraising data, press release and Crunchbase data!

- 3) Shared Investor (undirected): represents “A and B have a shared investor” based on 2). This is undirected, but illustrates the network effect experienced by a VC portfolio company.

We then categorize each pair, based on publicly available information, into the below categories, shown illustratively in the Table 2 (N = 753):


Table 2. Illustrative Table of Edges in Network Graph.

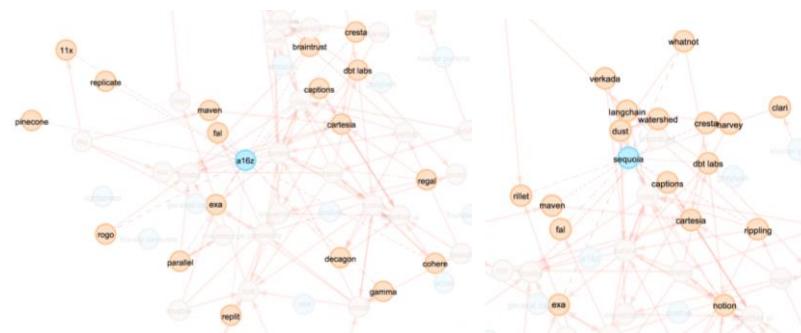
Id	Source	Target	Type	Weight	Relation
e1	s39	s1	Directed	3	Customer
e2	s29	s2	Directed	3	Customer
e3	s25	s2	Directed	3	Customer
e4	s50	s2	Directed	3	Customer
e5	s45	s2	Directed	3	Customer
...
e93	i1	s4	Directed	2	Investor
e94	i1	s5	Directed	2	Investor
e95	i1	s6	Directed	2	Investor
e96	i1	s9	Directed	2	Investor
e97	i1	s12	Directed	2	Investor
...
e203	s4	s5	Undirected	2	Shared _ Investor
e204	s4	s6	Undirected	2	Shared _ Investor
e205	s4	s9	Undirected	2	Shared _ Investor
e206	s4	s12	Undirected	2	Shared _ Investor
e207	s4	s14	Undirected	2	Shared _ Investor
...


After nodes and edges are concretely defined, I use Gephi to visualize the cluster and network effects, which will be explored in the next section.

3.2. Total Network Graph & Clusters

Per Figure 1 and 2, overall the network is closely connected, with an average degree of 6.8 and network diameter of 4, which represents the longest shortest path between two nodes in the network. (Note that this analysis is purely representing the publicly available data, not including non-disclosed customers, which likely will bring down diameter further.).

Figure 1. Total Network Graph (N = 50 + 14).


Figure 2. Total Network Graph Statistics.

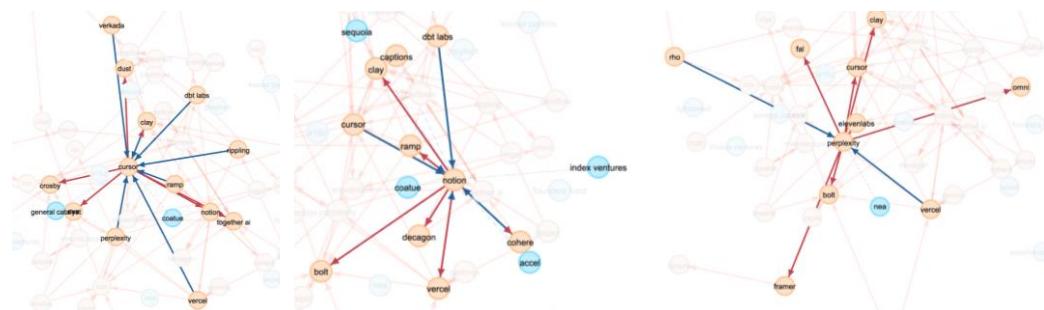
On average, any two nodes in the network are separated by 2.337 edges, which means they are within warm intros of customers that they don't already share. (Note this also includes investor nodes whose only path to another investor node is through two edges through a startup node.)

Using the “Yifan Hu” visual distribution algorithm, we see that both investors (e.g. a16z, Sequoia) and key startups (e.g. Cursor, Ramp, Clay) play a key connective role in this ecosystem.

3.3. VC Network Effect

Overall, Figure 3 shows each VC has its own network where certain clusters are formed (e.g. above Sequoia). It also shows a high degree of overlap between key VCs, i.e. startups central to the ecosystem tend to have multiple key VCs on their term sheets. This phenomenon is not new, since networks are within the value proposition of key VCs to startups.

Figure 3. VC Networks. (left: a16z; right: Sequoia. Note the network is broadly defined, including any round participation).


What's worth mentioning is that startups with the same investor demonstrates clearer revenue relationships. Below a very high-level example of Sequoia, which points to 60%+ of all Sequoia portfolio companies in the categories of "AI/ML," "North America," "Early Stage" shown on its website has one or more Sequoia portfolio startups as customers (growth or early stage); and among those with Sequoia portfolio customers, the startup websites show an average of Sequoia portfolio 2.83 customers.

This attests to the solid network effect of key VC firms, concretely manifested in revenue generation. However, it remains to be seen if this is truly “sticky” revenue that will outlast the VC connections.

3.4. "HubCo" Network Effect

The other, perhaps stronger effect beyond the VC network effect, is the connective power of certain startup nodes, which are usually slightly more established and thus serve as “hubs” for newer startups to which they are customers (see Figure 4). For example,

Cursor, as a vibe coding tool, has become essential to developer tools in the age of AI, but is also listed as a customer to other startups including, but not limited to, dev tools such as Dust, Clay, Notion, Together AI, and Crosby. Similarly, Notion has become essential as a documentation platform for many technology and non-technology companies and is also listed as a customer of Clay, Ramp, Bolt, Decagon, Vercel, and Cohere. These startups serve as “hubs” due to their central location in the ecosystem, which enables them to become paying customers to other newer tools.

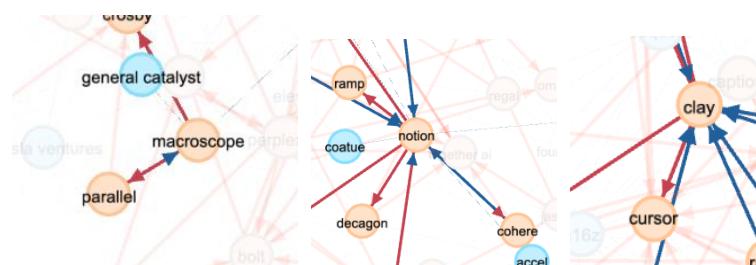


Figure 4. “HubCo” Effect. (left: Cursor; middle: Notion; right: Perplexity)

A similar question stands for the “HubCo” effect: how much of this is real, “sticky” revenue? Without more research data, the above commercial logic seems to be based on organic traction, and thus potentially proving to be a stronger cohesive than VC network effect.

3.5. Reciprocal Revenue Relationships

Our Figure 5 was based approach has enabled a clearer view of reciprocal revenue relationships. Although limited to publicly available data, certain pairs are already apparent, such as MacroScope and Parallel, Notion and Ramp, Notion and Cohere, and Clay and Cursor. In the case of MacroScope and Parallel, a “revenue triangle” effectively forms with Crosby, as both are also customers of Crosby.

Figure 5. Reciprocal Revenue Relationships.

For more established “HubCo” s, revenue reciprocity is a natural occurrence of its hub status in the ecosystem, but for smaller, earlier-stage startups this might not be a great sign. While revenue reciprocity alone is not indicative of strength of connection or durability of revenue, high concentration of reciprocal revenue relationships might serve as a signal of health of the startup’s growth.

Here are two general rules of thumb of reading graph-based networks for revenue reciprocity, in case higher quantity of data could be more illustrative of patterns:

1. **Customer Concentration:** if a startup has high customer concentration in certain logos, then in the event of the customers not being able to deliver recurring revenue, this event would not only adversely affect itself, but also the customer, forming a vicious cycle in the network;

2. **“In-degree” vs. “Out-degree”:** generally speaking, if a startup node has way more edges coming in than going out, that indicates a higher reliance on the network than it’s able to provide back. In the event of an adverse event affecting the network, these nodes would be most affected.

At the same time, there are also nodes that are not at all dependent on the network, e.g. vertical software for legal, healthcare and consumer industries. These startups might see fewer incoming edges within this network, but that does not represent its dependencies on other networks.

In summary, while the advantages of network effects—including accelerated revenue growth, ecosystem cohesion, and enhanced investor confidence—are substantial and often crucial for early-stage startups, they must be balanced against the inherent limitations. Dependence on network-driven revenue introduces concentration risk and potential challenges to long-term valuation stability. For venture-backed companies, the key lies in leveraging network benefits to jumpstart growth while simultaneously cultivating a diversified and sustainable revenue base that can support resilient long-term performance. Beyond individual startup success, the success of such an interdependent network as the AI startup landscape also depends on how much the leading “HubCo”s are able to give back demand.

4. Broader Implications for AI Startup Valuation

The revenue structures of AI startups have significant implications for their valuation, particularly in the context of venture capital investment strategies. Investors often prioritize high-potential technology teams even when revenue generation is still limited, reflecting a focus on technical capability, innovation potential, and market disruption. Early-stage revenue may be less critical than the perceived long-term value that a startup’s technology could unlock. Network effects and reciprocal revenue arrangements are frequently considered supportive elements for early valuations, as they can accelerate initial growth and signal ecosystem integration. These mechanisms can create the appearance of traction, reinforcing investor confidence and helping startups achieve higher valuations at an early stage.

However, the quality and sustainability of revenue remain central to long-term valuation logic. High valuations built on a narrow base of interdependent or network-driven revenue carry inherent risks. Revenue that is concentrated within a small set of interconnected clients may not reflect broader market demand, potentially resulting in overestimation of the company’s true growth potential. In contrast, startups that establish diversified customer bases through enterprise sales and direct market adoption tend to exhibit more robust and stable revenue streams. Such diversity strengthens financial resilience and provides a more accurate signal of product-market fit, competitive positioning, and scalability, which are essential for sustainable valuation.

To represent the characteristics and implications of different revenue models for AI startups, the Table 3 provides a conceptual overview:

Table 3. Conceptual Overview of Startup Revenue Sources.

Revenue Model	Key Features	Advantages	Potential Risks / Limitations	Implications for Valuation
Network- driven revenue	Revenue supported by VC investor network and portfolio connections	Rapid early traction, ecosystem credibility, access to GTM resources	Customer concentration, dependency on network, volatile revenue	Supports early valuation but sustainability depends on diversification

Reciprocal revenue	Startups act as each other's clients	Accelerates ARR, strengthens ecosystem cohesion, feedback for product development	Limited market validation, potential revenue volatility, reliance on few clients	Can boost short-term valuation; long-term stability requires broader market adoption
Direct enterprise sales	Revenue from independent customers via traditional sales channels	Diversified revenue, market-validated growth, higher stability	Slower initial growth, higher acquisition costs	Contributes to sustainable valuation, reflects true market demand

Thus, entrepreneurs are encouraged to balance early gains from network-driven and reciprocal revenue with broader market adoption to enhance resilience. Similarly, investors should consider revenue quality, diversity, and scalability alongside technical potential when assessing the valuation and growth prospects of AI startups.

5. Conclusion

Venture capital portfolio strategies, including network effects and reciprocal revenue arrangements, offer early-stage startups significant opportunities for rapid growth and initial market traction. The above graph-based view of the Silicon Valley AI startup and VC ecosystem, while focused and with limited data, presents a tangible view of the degree of interconnection for early-stage startups. Especially key to the ecosystem are 1) VC network effects, 2) "HubCo" Effects, and 3) Revenue Reciprocity.

These mechanisms can accelerate revenue generation, enhance ecosystem cohesion, and signal credibility to investors, supporting higher early-stage valuations. However, they also carry inherent risks related to revenue concentration, volatility, and limited market diversification, which may affect the sustainability of valuations over the long term.

Revenue diversification and direct enterprise sales remain central to ensuring stable and resilient value creation. Startups that establish broader customer bases through independent market adoption are more likely to maintain consistent growth, demonstrate robust product-market fit, and reduce dependency on specific networks or reciprocal arrangements. Such approaches provide a stronger foundation for long-term valuation and reduce exposure to fluctuations in network-driven revenue streams.

For both entrepreneurs and investors, these insights underscore the importance of evaluating revenue composition rather than focusing solely on headline metrics such as ARR or early fundraises. Understanding the sources, quality, and diversification of revenue is critical for assessing sustainability and avoiding overestimation of growth potential. High valuations may reflect technical promise or network advantages, but they must be interpreted in the context of revenue structure and scalability. By balancing early gains from network effects and reciprocal relationships with diversified market adoption, startups can enhance resilience, and investors can make more informed assessments of long-term value.

References

1. R. Moro-Visconti, The Valuation of Artificial Intelligence-Driven Startups, in Artificial Intelligence Valuation: The Impact on Automation, BioTech, ChatBots, FinTech, B2B2C, and Other Industries, Cham: Springer Nature Switzerland, 2024, pp. 293–344.
2. A. B. Siddik, Y. Li, and A. M. Du, "Unlocking funding success for generative AI startups: The crucial role of investor influence," *Finance Research Letters*, vol. 69, 2024, Art. no. 106203.
3. S. I. E. Putri, M. C. S. Irawan, H. R. Ardianov, A. Purnomo, and E. Rosyidah, "Artificial intelligence in the entrepreneurship: Patent landscape analysis," in 2023 International Conference on Inventive Computation Technologies (ICICT), 2023, pp. 441–447.

4. V. R. R. Ganuthula, "AI-enabled individual entrepreneurship theory: redefining scale, capability, and sustainability in the digital age," *Journal of Innovation and Entrepreneurship*, vol. 14, no. 1, 2025, Art. no. 85.
5. S. Ahluwalia and S. Kassieh, "Pathways to success: The interplay of industry and venture capital clusters in entrepreneurial company exits," *Journal of Risk and Financial Management*, vol. 17, no. 4, 2024, Art. no. 159.
6. L. Delpy, "Protection or pressure? Reciprocity in informal social protection in southern Madagascar," *World Development Perspectives*, vol. 34, 2024, Art. no. 100595.
7. M. Mitrega and G. Pfajfar, "Business relationship process management as company dynamic capability improving relationship portfolio," *Industrial Marketing Management*, vol. 46, 2015, pp. 193–203.
8. D. De Clercq and H. J. Sapienza, "Effects of relational capital and commitment on venture capitalists' perception of portfolio company performance," *Journal of Business Venturing*, vol. 21, no. 3, 2006, pp. 326–347.
9. R. Thakur and L. Workman, "Customer portfolio management (CPM) for improved customer relationship management (CRM): Are your customers platinum, gold, silver, or bronze?," *Journal of Business Research*, vol. 69, no. 10, 2016, pp. 4095–4102.
10. Hou, Rj., Zhang, Cb., "The Effect of Reciprocity on Revenue Sharing Contract Coordination and its Dynamics." In: Qi, E., Shen, J., Dou, R. (eds) *Proceedings of the 23rd International Conference on Industrial Engineering and Engineering Management 2016*. Atlantis Press, Paris.
11. Huang, Can, "Networks in Venture Capital Markets" (October 27, 2022).

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of GBP and/or the editor(s). GBP and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.