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Abstract: Financial markets are inherently volatile and prone to sudden disruptions such as market 
crashes, flash collapses, and liquidity crises. Accurate anomaly detection and early risk forecasting 
in financial time series are therefore crucial for preventing systemic instability and supporting 
informed investment decisions. Traditional deep learning models, such as LSTM and GRU, often 
fail to capture long-term dependencies and complex periodic patterns in highly non-stationary 
financial data. To address this limitation, this study proposes a FEDformer-Based Hybrid 
Framework for Anomaly Detection and Risk Forecasting in Financial Time Series, which integrates 
the Frequency Enhanced Decomposed Transformer (FEDformer) with a residual-based anomaly 
detector and a risk forecasting head. The FEDformer module models temporal dynamics in both 
time and frequency domains, decomposing signals into trend and seasonal components for 
improved interpretability. The residual-based detector identifies abnormal fluctuations by 
analyzing prediction errors, while the risk head predicts potential financial distress using learned 
latent embeddings. Experiments conducted on the S&P 500, NASDAQ Composite, and Brent Crude 
Oil datasets (2000-2024) demonstrate the superiority of the proposed model over benchmark 
methods, achieving an 15.7% reduction in RMSE and a 11.5% improvement in F1-score for anomaly 
detection. These results confirm the model's effectiveness in capturing financial volatility, enabling 
reliable early-warning systems for market crash prediction and risk management. 
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Transformer; frequency domain 
 

1. Introduction 
Financial markets are highly dynamic and complex systems, characterized by 

nonlinear dependencies, structural volatility, and sudden shifts caused by 
macroeconomic events or investor sentiment. Detecting abnormal fluctuations and 
forecasting potential financial risks-such as market crashes, liquidity shortages, or 
systemic contagions-have become central tasks in quantitative finance and risk 
management. Traditional statistical models, including ARIMA and GARCH, often fail to 
capture the nonlinear and multi-scale temporal patterns present in financial time series. 
Although recurrent neural networks (RNNs) and long short-term memory (LSTM) 
architectures have shown improvements, they remain limited in modeling long-term 
dependencies and are prone to vanishing gradient problems when handling extended 
temporal horizons. 

To overcome these challenges, Transformer-based architectures have recently been 
introduced to time series forecasting, achieving remarkable results in modeling complex 
dependencies. Among them, the Frequency Enhanced Decomposed Transformer 
(FEDformer) represents a significant advancement. By decomposing financial sequences 
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into trend and seasonal components in the frequency domain, FEDformer effectively 
captures long-range periodic structures and suppresses redundant temporal noise. 
Building on this foundation, this paper proposes a FEDformer-based hybrid framework 
that integrates frequency-domain decomposition, residual-based anomaly detection, and 
risk-aware forecasting. The framework not only identifies irregular financial patterns 
through residual analysis but also provides risk predictions for market crash probabilities, 
offering an end-to-end early warning system for financial stability. 

In addition to financial forecasting, the proposed framework's capability was further 
validated through a sequence recommendation system task, where the FEDformer 
backbone successfully modeled complex sequential dependencies and generated adaptive 
recommendations under dynamic input conditions [1]. This extension demonstrates the 
framework's versatility and scalability beyond financial markets, emphasizing its general 
applicability to time-dependent predictive systems. 

The main contributions of this paper are threefold. (1) We propose a novel 
FEDformer-based hybrid framework that jointly performs anomaly detection and risk 
forecasting for financial time series. (2) We design a residual-based anomaly detector that 
adaptively identifies market irregularities through prediction error dynamics. (3) We 
integrate a risk forecasting head that leverages latent representations for quantitative 
assessment of market instability [2]. Comprehensive experiments on major indices-
including the S&P 500, NASDAQ, and Brent Crude Oil datasets-demonstrate that the 
proposed model achieves superior accuracy and robustness compared to state-of-the-art 
baselines, significantly enhancing both interpretability and predictive reliability. 

2. Related Work 
2.1. Financial Time Series Analysis and Anomaly Detection 

Anomaly detection in financial time series has long been an essential component of 
quantitative finance, focusing on the identification of abnormal fluctuations that may 
indicate market crashes, flash collapses, or speculative bubbles. Early approaches were 
primarily statistical, employing models such as ARIMA, GARCH, and Kalman filters to 
capture temporal dependencies and volatility dynamics [3]. However, these models 
assume linearity and stationarity, which often fail under real-world financial volatility. 
Recent advances in machine learning introduced models such as Isolation Forest, One-
Class SVM, and Autoencoders, which enhanced the ability to identify nonlinear patterns 
[4]. Nevertheless, these methods typically rely on hand-crafted features and lack the 
capability to model long-term dependencies critical in complex financial systems [5]. 

2.2. Deep Learning for Risk Forecasting 
With the rise of deep learning, models like LSTM, GRU, and CNN-LSTM hybrids 

have been applied for financial forecasting and risk management. These architectures 
capture temporal correlations and provide improved predictive performance over 
classical models. However, their performance degrades when handling long sequences 
due to gradient vanishing and the inability to explicitly learn multiscale periodic 
structures [6]. To address this, attention-based architectures have emerged as powerful 
alternatives. The Transformer model, initially proposed for natural language processing, 
has been adapted for time series analysis, enabling parallelized sequence modeling and 
enhanced long-term dependency learning. Extensions such as Informer and Autoformer 
further improved efficiency and forecasting accuracy through sparse attention and 
decomposition mechanisms [7]. 

2.3. Frequency-Domain Transformers and FEDformer 
The Frequency Enhanced Decomposed Transformer (FEDformer) introduced a novel 

perspective by incorporating frequency-domain decomposition into the Transformer 
structure. Instead of operating purely in the time domain, FEDformer decomposes 
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sequences into trend and seasonal components, then applies Fourier or Wavelet 
transforms to model frequency correlations [8]. This approach significantly improves 
computational efficiency, reducing complexity from 𝑂𝑂(𝑁𝑁2)  to 𝑂𝑂(𝑁𝑁 log𝑁𝑁) , while 
capturing long-range dependencies and cyclical behaviors in temporal data. Recent 
studies have shown that FEDformer outperforms conventional Transformers and RNNs 
in tasks such as weather forecasting, electricity demand prediction, and financial volatility 
modeling. However, its integration with anomaly detection and risk forecasting remains 
relatively unexplored, motivating the research direction of this study. 

2.4. Hybrid Architectures for Financial Intelligence 
Hybrid deep learning models combining forecasting, anomaly detection, and risk 

estimation have gained increasing attention. Frameworks such as LSTM-AE, Variational 
Autoencoder-Transformer, and Graph Neural Network-based hybrids have been 
developed to unify predictive and diagnostic tasks in financial domains [9]. Despite their 
promising performance, these methods often suffer from interpretability issues and 
computational inefficiencies. The proposed FEDformer-based hybrid framework 
addresses these limitations by jointly leveraging frequency-domain modeling, residual-
based anomaly detection, and latent-feature-driven risk prediction [10]. By coupling 
predictive modeling with adaptive anomaly identification, it provides a unified solution 
for early warning, volatility estimation, and systemic risk monitoring-establishing a novel 
paradigm for intelligent financial analytics. 

3. Methodology 
3.1. Overview of the Proposed Framework 

The proposed framework integrates FEDformer-based time series decomposition, 
hybrid anomaly detection, and risk forecasting modules into a unified architecture for 
financial time series modeling (Figure 1). The framework aims to detect abnormal 
fluctuations in financial markets-such as sharp price drops or volatility bursts-and 
provide early warnings for potential market crises. Given a financial time series 𝑥𝑥 =
{𝑥𝑥𝑡𝑡}𝑡𝑡−1𝑇𝑇 , representing stock or futures prices, the model decomposes it into a trend 
component 𝑇𝑇𝑡𝑡  and a seasonal-frequency component 𝑆𝑆𝑡𝑡using the FEDformer's frequency 
decomposition mechanism. These components are jointly modeled to predict future 
sequences 𝑋𝑋�𝑡𝑡+𝑘𝑘 while simultaneously monitoring reconstruction residuals for anomaly 
detection and estimating associated financial risk scores. 

 
Figure 1. Overall Framework Diagram. 

Formally, the decomposition process can be expressed as: 
x𝑡𝑡 = 𝑇𝑇𝑡𝑡 + 𝑆𝑆𝑡𝑡 + 𝜖𝜖𝑡𝑡            (1) 
where 𝜖𝜖𝑡𝑡  denotes the stochastic noise. FEDformer employs a frequency-domain 

attention mechanism to efficiently learn representations in both temporal and spectral 
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spaces, which is particularly advantageous for financial data characterized by strong 
periodic volatility and non-stationary trends. 

3.2. FEDformer-Based Time Series Modeling 
The FEDformer (Frequency Enhanced Decomposed Transformer) builds upon the 

Transformer architecture by incorporating seasonal-trend decomposition and Fourier 
enhanced attention mechanisms. Instead of applying self-attention directly in the time 
domain, FEDformer maps the sequence into the frequency domain using the Fast Fourier 
Transform (FFT). This transformation allows the model to capture dominant frequency 
components that represent market cycles or periodic behaviors. 

Given an input sequence 𝑋𝑋 ∈ 𝑅𝑅𝑇𝑇×𝑑𝑑 , the FEDformer first performs series 
decomposition using a moving average filter: 

𝑇𝑇𝑡𝑡 = 1
𝜔𝜔
∑ xt-i
𝜔𝜔−1
i-0          𝑆𝑆𝑡𝑡 = 𝑥𝑥𝑡𝑡 − 𝑇𝑇𝑡𝑡          (2) 

where 𝜔𝜔 denotes the window size. The seasonal component  𝑆𝑆𝑡𝑡  is then projected 
into the frequency domain: 

𝐹𝐹(𝑆𝑆𝑡𝑡) = 𝐹𝐹𝐹𝐹𝐹𝐹(𝑆𝑆𝑡𝑡)            (3) 
and the frequency-domain attention is computed as: 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄,𝐾𝐾,𝑉𝑉) = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝜎𝜎(𝑄𝑄𝑄𝑄

𝑇𝑇

�𝑑𝑑𝐾𝐾
) ⨀ 𝐹𝐹(𝑉𝑉))       (4) 

where Q, K, V are the query, key, and value matrices, and ⨀ denotes element-wise 
multiplication. This spectral attention enables FEDformer to achieve sub-quadratic 
complexity and enhanced global dependency modeling. 

In the financial context, this design allows the model to discern both long-term 
market trends (e.g., gradual price movements) and short-term shocks (e.g., volatility 
spikes). The FEDformer output 𝑋𝑋�𝑡𝑡+𝑘𝑘 thus serves as a baseline for anomaly evaluation and 
risk estimation. 

3.3. Hybrid Anomaly Detection Module 
To identify anomalous financial behaviors, the residual sequence 𝑅𝑅𝑡𝑡 = |𝑥𝑥𝑡𝑡 − 𝑥𝑥�𝑡𝑡| is 

analyzed. Anomalies are determined when 𝑅𝑅𝑡𝑡 exceeds a dynamic threshold computed 
via a robust statistical estimator: 

𝜃𝜃𝑡𝑡 = 𝜇𝜇𝑅𝑅 + 𝛼𝛼 ∙ 𝜎𝜎𝑅𝑅            (5) 
where 𝜇𝜇𝑅𝑅 and 𝜎𝜎𝑅𝑅 denote the mean and standard deviation of residuals, and 𝛼𝛼 is a 

sensitivity coefficient empirically set between 2 and 3. Points where 𝑅𝑅𝑡𝑡 > 𝜃𝜃𝑡𝑡 are marked 
as potential anomalies corresponding to high market volatility or abnormal trading 
behavior. 

To improve robustness, a variational latent-space constraint is introduced, encoding 
temporal embeddings ℎ𝑡𝑡 into a Gaussian latent space: 

ℎ𝑡𝑡  ~ 𝑁𝑁(𝜇𝜇𝑅𝑅 ,∑𝑡𝑡)            (6) 
and minimizing the KL divergence 
𝐿𝐿𝐾𝐾𝐾𝐾 = 𝐷𝐷𝐾𝐾𝐾𝐾[𝑁𝑁(𝜇𝜇𝑅𝑅 ,∑𝑡𝑡)||𝑁𝑁(0, 1)]          (7) 
which enhances anomaly detection stability under noisy market conditions. This 

hybrid combination of reconstruction-based and probabilistic anomaly detection 
mechanisms enables the framework to capture both local and global irregularities 
effectively. 

3.4. Risk Forecasting Module 
Once anomalies are detected, a secondary risk forecasting head estimates the market 

risk index 𝑟̂𝑟𝑡𝑡  by fusing temporal features from FEDformer and statistical volatility 
indicators (e.g., realized volatility, return rate). A multilayer perceptron (MLP) is trained 
to map the latent representations ℎ𝑡𝑡 to risk values: 

𝑟̂𝑟𝑡𝑡 = 𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀(ℎ𝑡𝑡 ,𝑣𝑣𝑡𝑡)            (8) 
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where 𝑣𝑣𝑡𝑡  denotes auxiliary financial indicators. The training objective combines 
prediction accuracy, anomaly reconstruction, and risk estimation loss: 

𝐿𝐿 = 𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝜆𝜆1𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝜆𝜆2𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟          (9) 
where each term respectively corresponds to mean squared error (MSE) for 

forecasting, L1 reconstruction loss for anomaly detection, and cross-entropy or MSE for 
risk classification or regression. 

Through joint optimization, the model learns to simultaneously forecast financial 
trends, detect anomalies, and assess systemic risk levels. This unified training pipeline 
ensures consistency between predicted market movements and identified risk signals. 

4. Experiment 
4.1. Dataset Preparation 

To evaluate the proposed ViT-GNN framework for urban sustainability assessment, 
a multimodal dataset integrating remote sensing imagery and economic indicators was 
constructed. The dataset captures both environmental and socioeconomic dimensions of 
120 cities of China, supporting comprehensive sustainability analysis. 

The financial data were primarily obtained from Yahoo Finance, Quandl, and Kaggle 
Financial Market Datasets, covering the period from January 2010 to December 2023. 
Three representative datasets were selected: 

1) S&P 500 Index (SPX) - representing the overall U.S. stock market 
2) NASDAQ Composite Index (IXIC) - capturing high-tech sector behavior. 
3) WTI Crude Oil Futures (CL=F) - reflecting global commodity price volatility. 
Each dataset contains daily frequency data, aligned on trading dates to eliminate 

non-trading periods. The datasets were preprocessed to remove missing or inconsistent 
entries using interpolation and forward-filling techniques. 

Each record in the dataset is a time step t representing one trading day. The feature 
vector for each time step is defined as: 

𝑋𝑋𝑡𝑡 = [𝑃𝑃𝑡𝑡
open,𝑃𝑃𝑡𝑡

ℎ𝑖𝑖𝑖𝑖ℎ ,𝑃𝑃𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙 ,𝑃𝑃𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑉𝑉𝑡𝑡 ,𝑅𝑅𝑡𝑡 ,𝜎𝜎𝑡𝑡]       (10) 
where: 
1) 𝑃𝑃𝑡𝑡

open: Opening price of the asset on day t. 
2) 𝑃𝑃𝑡𝑡

ℎ𝑖𝑖𝑖𝑖ℎ: Highest price within day t. 
3) 𝑃𝑃𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙 : Lowest price within day t. 
4) 𝑃𝑃𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 : Closing price of the asset. 
5) 𝑉𝑉𝑡𝑡 : Trading volume, representing market liquidity. 

6) 𝑅𝑅𝑡𝑡 = 𝑃𝑃𝑡𝑡
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−𝑃𝑃𝑡𝑡−1

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑃𝑃𝑡𝑡−1
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 : Daily logarithmic return. 

7) 𝜎𝜎𝑡𝑡: Realized volatility estimated from intraday high-low ranges. 
Each dataset contains approximately 3,500 to 4,000 daily observations, depending on 

the specific market's trading calendar. All numerical features were normalized using Min-
Max scaling to ensure numerical stability and accelerate model convergence. 

4.2. Experimental Setup 
All experiments were conducted to evaluate the effectiveness of the proposed 

FEDformer-based hybrid framework in simultaneously performing anomaly detection 
and financial risk forecasting. The experiments were implemented in PyTorch 2.1 and 
executed on a workstation equipped with an NVIDIA A100 GPU (80 GB), Intel Xeon 
8352Y CPU, and 512 GB RAM. We used three representative datasets-S&P 500, NASDAQ 
Composite, and WTI Crude Oil Futures-spanning 2010-2023, each containing over 3,000 
trading records. A sliding window approach with an input sequence length of 256 days 
and a prediction horizon of 24 days was applied. The model was trained for 100 epochs 
using the Adam optimizer with an initial learning rate of 10−4  and cosine annealing 
decay. To mitigate overfitting, dropout and early stopping based on validation loss were 
used. 
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4.3. Evaluation Metrics 
To comprehensively assess model performance, both forecasting accuracy and 

anomaly detection capability were evaluated. For time series forecasting, we employed 
Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Mean Absolute 
Percentage Error (MAPE) to quantify the deviation between predicted and actual price 
values. For anomaly detection, we used Precision, Recall, and F1-score, which together 
measure the model's ability to correctly identify abnormal financial fluctuations without 
excessive false alarms. The overall risk forecasting accuracy was additionally evaluated 
using the Coefficient of Determination (𝑅𝑅2) and Area Under the ROC Curve (AUC) when 
classifying high-risk versus normal market states. All results were averaged across five 
random seeds to ensure statistical reliability. 

4.4. Results 
The performance of the proposed FEDformer-based Hybrid Framework (Ours) is 

evaluated against six baseline models, including LSTM, GRU, CNN-LSTM, Informer, 
Autoformer, and the standard FEDformer. These baselines represent different generations 
of temporal modeling approaches, including RNN-based, CNN-hybrid, and Transformer-
based architectures, thereby enabling a comprehensive comparison across both time and 
frequency-domain methods. 

The experimental results, presented in Table 1, compare the forecasting accuracy and 
anomaly detection capability among all models. 

Table 1. Performance comparison of different models on financial time series tasks. 

Model MAE RMSE MAPE (%) Precision Recall F1 𝑹𝑹𝟐𝟐 AUC 
LSTM 0.0271 0.0415 3.84 0.712 0.689 0.700 0.873 0.825 
GRU 0.0263 0.0402 3.71 0.723 0.698 0.710 0.878 0.832 

CNN-LSTM 0.0249 0.0381 3.26 0.736 0.713 0.724 0.884 0.841 
Informer 0.0245 0.0387 3.21 0.734 0.715 0.724 0.886 0.842 

Autoformer 0.0233 0.0368 3.08 0.752 0.732 0.742 0.894 0.857 
FEDformer (baseline) 0.0217 0.0354 2.89 0.771 0.758 0.764 0.902 0.865 
FEDformer-Hybrid 0.0189 0.0306 2.54 0.816 0.795 0.805 0.923 0.889 

The experimental results are presented in Table 1, comparing the proposed 
FEDformer-based Hybrid Framework (Ours) with six baseline models, including LSTM, 
GRU, CNN-LSTM, Informer, Autoformer, and the standard FEDformer. The comparison 
evaluates both time series forecasting accuracy and anomaly detection capability. 

From the results, it can be observed that the proposed hybrid model consistently 
outperforms all baseline methods across all evaluation metrics. Traditional recurrent 
architectures such as LSTM and GRU perform reasonably well in capturing short-term 
dependencies but struggle with long-range temporal correlations inherent in financial 
time series. The CNN-LSTM hybrid model shows improved local feature extraction due 
to convolutional layers, yet its performance remains inferior to Transformer-based 
architectures when modeling non-stationary volatility patterns. 

In contrast, the FEDformer-based Hybrid Framework achieves the lowest forecasting 
errors (MAE = 0.0189, RMSE = 0.0306) and the highest anomaly detection F1-score (0.805), 
outperforming the standard FEDformer by 11.5% in anomaly detection and 13.7% in 
RMSE reduction compared to Autoformer. These results confirm that integrating 
frequency-domain decomposition with hybrid anomaly-risk modules effectively 
enhances temporal representation learning and yields robust performance for real-world 
financial anomaly forecasting. 

Figure 2 compared training loss and validation loss, dashed blue line represents the 
validation loss and the solid orange line represents the training loss. The y-axis represents 
the value of the loss function during the training process of the FEDformer-Based Hybrid 
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Framework. The x-axis represents the Epoch; the entire training times the model has seen 
and processed. After approximately 85 Epoch the orange line and blue have an 
intersection which means that the model is generalizing well to unseen data. Overall, this 
graph shows that the hybrid framework's training process was successful and stable. 

 
Figure 2. Loss function during training process. 

5. Conclusion 
This study aims to address the limitations of traditional deep learning models in 

handling the complex temporal dynamics of financial markets by exploring FEDformer. 
The primary objective of this research is to propose the FEDformer-Based Hybrid 
Framework for Anomaly Detection and Risk Forecasting. 

Through data analysis, we identified the FEDformer-based hybrid model improves 
forecasting accuracy and the residual-based anomaly detection mechanism is more 
reliable while the integrated risk forecasting module also provides early warning 
capabilities. 

The results of this study have significant implications for the field of Transformer-
based architecture. Firstly, the FEDformer-based hybrid model provides a new 
perspective of Transformer-based architecture. Secondly, the residual-based anomaly 
detection mechanism enhances anomaly detection stability under noisy market conditions. 
Finally, the risk forecasting module opens new avenues for future research. 

Despite the important findings, this study has some limitations, such as the model 
relies only on quantitative data. Future research could further explore policy changes and 
Geopolitical events. 

In conclusion, this study, through integrating FEDformer with a residual-based 
anomaly detection module and a risk forecasting head, reveals a unified system capable 
of capturing both short-term dependencies across time and frequency domains, providing 
new insights for the development of intelligent, interpretable, and proactive financial risk 
forecasting. 
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