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Abstract: Analyzing the spatial spillover effect of agricultural carbon emissions in the Beibu Gulf 
urban agglomeration reveals the transmission pathways and key factors influencing agricultural 
carbon emissions across various regions. This, in turn, provides targeted policy recommendations 
for government bodies and relevant decision-makers. Using panel data from the Beibu Gulf urban 
agglomeration between 2012 and 2021, this paper conducts spatial correlation tests to quantitatively 
analyze the spatial spillover effect of agricultural carbon emissions, exploring their distribution pat-
terns and the factors that influence them. The results are as follows: (1) The cities with the highest 
total average agricultural carbon emissions do not necessarily align with those having the highest 
average agricultural carbon emission intensity; a high carbon consumption does not directly corre-
late with a simultaneous rise in agricultural output. (2) A significant positive spatial correlation ex-
ists in agricultural carbon emissions within the Beibu Gulf urban agglomeration, indicating a spatial 
clustering effect. (3) Agricultural carbon emissions in most cities in the Beibu Gulf exhibit two clus-
tering trends: "low-low" and "high-high." Understanding these effects and their determinants can 
serve as a valuable reference for agricultural carbon reduction strategies and targeted policies, not 
only within the Beibu Gulf urban agglomeration but also across the entire country. 
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1. Introduction 
As the effects of global climate change become more pronounced, the issue of green-

house gas emissions has gained significant global attention. By the close of 2023, agricul-
tural activities in China accounted for 6.1% of the nation's total greenhouse gas emissions, 
positioning it as the third-largest contributor. following energy and industrial activities. 
Therefore, advancing agricultural emission reduction, carbon sequestration, and low-car-
bon agricultural development is crucial for achieving China's "dual-carbon" targets. In 
response to national directives, Guangxi has fully executed the strategic directives set 
forth by the Central Committee of the Communist Party of China and the State Council 
regarding carbon peaking and carbon neutrality. The region has also released the "Imple-
mentation Plan for Carbon Peaking in Guangxi Zhuang Autonomous Region," offering 
guidance for promoting industrial green development. With rapid urbanization and re-
gional integration, urban agglomerations have become central to economic growth. The 
Beibu Gulf urban agglomeration, a crucial region for China's cooperation with ASEAN, 
holds a vital position in the national development strategy. Its agricultural production 
benefits from unique geographical and resource advantages, making it essential for en-
suring regional food security and stable agricultural supplies. However, factors such as 
accelerated urbanization, agricultural modernization, and population growth have in-
creasingly connected the economies of cities within the Beibu Gulf urban agglomeration, 
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leading to mutual influences in agricultural activities. This interconnectedness may trig-
ger a spatial spillover effect in agricultural carbon emissions, meaning the changes in 
emissions in one region not only depend on local factors but could also affect neighboring 
regions either positively or negatively. Based on this, this paper first examines the spatial 
distribution characteristics of agricultural carbon emissions in the Beibu Gulf urban ag-
glomeration, constructs a spatial spillover model, and explores the mutual effects of emis-
sions across cities. It then calculates the spatial autocorrelation coefficient and builds a 
spatial econometric model to reveal the spillover mechanisms and transmission pathways 
of agricultural carbon emissions. Additionally, the paper analyzes the impact of factors 
such as agricultural industrial structure, energy efficiency, and agricultural technology on 
emissions, and offers targeted strategies for emission reduction. This research aims to sup-
port the green transformation and sustainable agricultural development in the Beibu Gulf 
urban agglomeration, improve the regional ecological environment, contribute to achiev-
ing the "dual-carbon" goals, and provide valuable theoretical and practical insights for 
promoting high-quality development of agriculture in China. 

2. Literature Review 
Carbon emissions, a key area of contemporary academic research, have seen signifi-

cant advancements in recent years. Among these, agricultural carbon emissions have at-
tracted considerable attention due to their complexity and practical significance. Both do-
mestic and international scholars have extensively studied the construction of carbon 
emission measurement systems. Regarding the sources of agricultural carbon emissions, 
it is widely acknowledged that fertilizers, pesticides, agricultural films, irrigation, land 
tillage, straw burning, and livestock and poultry breeding are the primary contributors 
[1-5], with fertilizers being the leading source of emissions. As research deepens, some 
scholars have expanded the range of factors included in agricultural carbon emission 
measurement systems. For instance, agricultural diesel fuel was incorporated [1], while 
the role of methane emissions from rice cultivation in contributing to carbon emissions 
was highlighted [6]. 

Current academic approaches to accounting for agricultural carbon emissions in-
clude methods such as field measurement [7], the emission factor method (also known as 
the emission coefficient method) [8-10], the Gini coefficient method [2,11], and the life cy-
cle method [12-14]. Kernel density estimation and the Markov chain method [15], based 
on the Gini coefficient approach, were used to analyze the distribution and movement of 
regional agricultural carbon emissions. China was divided into three regions and eight 
sub-regions, and the Terrell index and log-mean of variance were used to systematically 
analyze the structural characteristics and spatial-temporal differences in agricultural car-
bon emissions across the country [2]. 

In addition, there has been a growing focus on the spatial distribution and evolution 
of agricultural carbon emissions. Studies have shown that the spatial distribution of agri-
cultural carbon emissions in China closely aligns with the major grain-producing areas, 
following a pattern of central > eastern > western regions [3,16]. Some researchers have 
examined the spatial evolution of these emissions, noting a general decline in emissions 
in China's primary grain-producing areas in recent years, although inter-provincial dis-
parities have widened [17,18]. Wei Qin et al. observed that the gap between agricultural 
carbon emissions in northern and southern China is gradually narrowing [19]. Economic 
development has been identified as the most significant factor driving the spatial correla-
tion of agricultural carbon emissions, with agricultural production efficiency and labor 
migration also playing roles in influencing the spatial distribution of these emissions. [20-
22]. 

As a major contributor to global greenhouse gas emissions, agricultural carbon emis-
sions are critical to regional development. The SBM-Undesirable model was used to ex-
plore the significant reduction in arable land utilization in Henan, Heilongjiang, and 
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Jiangxi, considering carbon emissions. It has also been argued that the varying impacts of 
carbon taxes on agricultural carbon emissions across regions could exacerbate regional 
development imbalances [23,24]. In conclusion, both domestic and international literature 
offers a wide array of perspectives and extensive theoretical discussions, providing sub-
stantial theoretical and empirical support for the study of agricultural carbon emissions. 
This body of work serves as a valuable reference for understanding the drivers, spatial 
distribution, and underlying mechanisms of agricultural carbon emissions, offering guid-
ance for the formulation and implementation of emission reduction policies. However, in 
terms of research focus, few studies have conducted in-depth analysis on the agricultural 
carbon emissions in the Beibu Gulf Economic Belt, despite its significance as a major agri-
cultural production region in China. This paper aims to address this gap by focusing on 
the Beibu Gulf economic belt urban agglomeration, contributing to the development of 
research on agricultural carbon emissions in the southeastern region of China. Moreover, 
the effectiveness and depth of existing agricultural carbon emission measurement systems 
still require improvement. This paper enhances the scope by incorporating additional in-
dicators, including variables such as agricultural product trade and environmental regu-
lation levels, and introduces innovative spatial geographic and spatial econometric mod-
els for the modeling framework. 

3. Research Methodology, Selection of Indicators and Data Sources 
3.1. Research Methods 
3.1.1. Measurement of agricultural carbon emission intensity 

Based on previous studies, this paper identifies the primary carbon sources as ferti-
lizer application, total agricultural machinery power, mechanized farming area, crop 
sown area, and irrigated farmland area [4,25]. The corresponding emission coefficients are 
0.8956kg/kg, 0.18kg/kW, 16.47kg/hm², 312.6kg/km², and 19.8575kg/hm², respectively. The 
agricultural carbon emissions are calculated using the following formula: 

𝐸𝐸 = ∑𝐸𝐸𝑖𝑖 × 𝑇𝑇𝑖𝑖           (1) 
In equation (1), E represents the total agricultural carbon emissions, 𝐸𝐸𝑖𝑖 denotes the 

carbon emission coefficient for a specific category i of carbon source, and 𝑇𝑇𝑖𝑖  refers to the 
total consumption of that carbon source. 

At present, most scholars use the carbon emissions per unit of agricultural output 
value to measure the intensity of agricultural carbon emissions, and the calculation for-
mula is: 

𝐴𝐴𝐸𝐸𝐴𝐴 = 𝐸𝐸/𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴           (2) 
In equation (2), AEI is the intensity of agricultural carbon emissions; E is the total 

amount of agricultural carbon emissions; and AGDP is the total agricultural output value. 

3.1.2. Spatial Correlation Test 
Global Moran's I (Global Moran's Index) is used to test whether there is spatial cor-

relation between agricultural carbon emissions in the Beibu Gulf urban agglomeration, 
and the calculation formula is: 

𝐴𝐴 =
∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖�𝑥𝑥𝑖𝑖−𝑥𝑥��

𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1

𝑆𝑆2 ∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖
𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑛𝑛=1

          (3) 

Meanwhile, Local Moran's I (LMI) was used to analyze the agglomeration pattern of 
agricultural carbon emissions in adjacent areas, calculated as: 

𝐴𝐴𝑖𝑖 = (𝑥𝑥𝑖𝑖−�̅�𝑥)
𝑆𝑆2

∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1 (𝑥𝑥𝑖𝑖 − �̅�𝑥)         (4) 

In Eqs. (3) and (4), 𝑥𝑥𝑖𝑖 is the agricultural carbon emission in region i; �̅�𝑥 is the sample 
mean; 𝑆𝑆2 is the sample variance; and 𝑤𝑤𝑖𝑖𝑖𝑖  is the element of row i and column j in the 
spatial matrix. Where I ∈  [−1, 1]. The three spatial matrices constructed are: adjacency 

spatial matrix: 𝑤𝑤01 = � 1, 𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑗𝑗𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
0, 𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑛𝑛𝑎𝑎 𝑎𝑎𝑎𝑎𝑗𝑗𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎; geographic distance matrix: 𝑤𝑤𝑖𝑖𝑖𝑖 =
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0, 𝑖𝑖 = 𝑗𝑗

 ; and economic distance matrix: 𝑤𝑤𝑖𝑖𝑖𝑖 = �
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. d is the distance between 

the two distances between regions; 𝑤𝑤𝑖𝑖𝑖𝑖 = �
1

�𝑦𝑦𝚤𝚤���−𝑦𝑦𝚥𝚥����
, 𝑖𝑖 ≠ 𝑗𝑗

0, 𝑖𝑖 = 𝑗𝑗
 denotes the per capita GDP of Re-

gion i. 

3.2. Selection of Indicators 
Drawing on existing literature, this paper identifies three key factors:  
1) Industrial structure, which indicates the degree of agricultural resource utiliza-

tion and production efficiency, and thus plays a direct or indirect role in the low-
carbon transition of agriculture. This is measured by the proportion of agricul-
tural output value to the total output value of agriculture, forestry, animal hus-
bandry, and fishery.  

2) Urbanization rate, which reflects the level of technological support for agricul-
ture through industrialization. As urbanization progresses, there is a growing 
demand for clean, non-polluting, and high-quality agricultural products, en-
couraging farmers to adopt more sustainable production technologies, leading 
to reduced carbon consumption. This is measured by the proportion of the ur-
ban population to the total population.  

3) Scale of agricultural cultivation, where the economic advantages of large-scale 
cultivation are well-documented in previous studies, as it enhances agricultural 
efficiency and reduces carbon consumption. This paper measures it using the 
ratio of crop cultivation area to rural population. 

3.3. Data Sources 
The data used in this paper are primarily sourced from the Guangdong Rural Statis-

tical Yearbook, Hainan Statistical Yearbook, China Urban Statistical Yearbook, Guang-
dong Statistical Yearbook, and Guangxi Statistical Yearbook. Detailed statistical results 
for each variable are presented in Table 1. 

Table 1. Descriptive statistics of variables. 

Variable name 
Observed 

value 
Mean 
value 

Standard de-
viation 

Minimum 
value 

Maximum 
value 

Agricultural carbon 
emissions 

150 167,790.74 136,278.64 25,593.67 516,019.81 

Industrial structure 150 0.448 0.168 0.148 0.822 
Urbanization level 150 0.506 0.109 0.329 0.826 
Cultivated area per 

capita 
150 5.389 6.648 0.418 28.184 

4. Research Results and Analysis 
4.1. Distribution Characteristics of Agricultural Carbon Emissions in the Beibu Gulf City 
Cluster 

The figure illustrates the spatial distribution of total agricultural carbon emissions 
across different prefecture-level cities. From 2012 to 2021, cities in the Beibu Bay region, 
such as Zhanjiang, Maoming, and Nanning, exhibited higher average total agricultural 
carbon emissions, while cities like Dongfang, Danzhou, and Haikou had lower emissions. 
Figure 2 further shows that areas with higher average carbon intensity within the Beibu 
Bay cities are primarily concentrated in Chengmai County, Changjiang Lizu Autonomous 
County, and Chongzuo City, whereas cities like Yangjiang, Zhanjiang, Maoming, and Bei-
hai have lower agricultural carbon intensity. This comparison reveals that cities with high 
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total agricultural carbon emissions do not necessarily overlap with those showing high 
carbon intensity. A higher carbon intensity does not imply that the agricultural economy 
is growing at the same pace. Cities such as Chongzuo and Chengmai, which have both 
high total agricultural carbon emissions and high agricultural carbon intensity, are pivotal 
for the development of low-carbon agricultural strategies. 

4.2. Spatial Correlation Test 
Overall, the Moran's I index values are all greater than 0, with the Moran's I index for 

China's agricultural carbon emissions in 2012, 2013, 2014, 2015, 2016, 2017, and 2019 pass-
ing at least the 5% significance test (Table 2). This suggests a significant positive spatial 
correlation in agricultural carbon emissions within the Beibu Gulf urban agglomeration, 
indicating a spatial clustering effect. (Table 2). 

Table 2. Moran's I index under the spatial weight matrix of geographic distance, 2012-2021. 

year i E(i) sd(i) z p-value 
2012 0.208 -0.071 0.139 2.012 0.044 
2013 0.216 -0.071 0.139 2.076 0.038 
2014 0.215 -0.071 0.138 2.067 0.039 
2015 0.210 -0.071 0.138 2.046 0.041 
2016 0.210 -0.071 0.137 2.052 0.040 
2017 0.194 -0.071 0.135 1.965 0.049 
2018 0.188 -0.071 0.135 1.929 0.054 
2019 0.200 -0.071 0.137 1.977 0.048 
2020 0.194 -0.071 0.137 1.934 0.053 
2021 0.172 -0.071 0.133 1.830 0.067 

4.3. Local Spatial Correlation 
The Moran's I scatter plot helps characterize the local spatial correlation. Cities in the 

first quadrant indicate relatively high agricultural carbon emissions that form a cluster, 
while cities in the third quadrant represent relatively low agricultural carbon emissions 
that also form a cluster. Cities in Quadrants 2 and 4 either have low agricultural carbon 
emissions surrounded by high emissions or vice versa. The following Moran's I scatter 
plots for agricultural carbon emissions in the Beibu Gulf city cluster for 2013, 2017, and 
2021 are presented. The figures reveal that most cities' agricultural carbon emissions are 
clustered in the first and third quadrants, forming "low-low" and "high-high" clustering 
patterns. 

5. Conclusion 
Based on empirical analysis, this paper explores the spatial spillover effect of agricul-

tural carbon emissions in the Beibu Gulf city cluster and the factors influencing them, 
drawing the following conclusions: 

The total agricultural carbon emissions in the Beibu Gulf city cluster have generally 
declined over time, with a corresponding decrease in emission intensity. This trend is 
largely attributed to the government's increasing focus on ecological development and 
promotion of low-carbon growth. In response, the Beibu Gulf city cluster has made efforts 
to reduce both total emissions and their intensity. 

There are notable regional disparities in agricultural carbon emission intensity within 
the Beibu Gulf city cluster. Cities with higher economic development, particularly inland 
areas, tend to have higher emission intensity, while coastal cities typically exhibit lower 
intensity. For instance, Nanning, the central city of the region, shows higher carbon inten-
sity, while coastal cities like Qinzhou and Beihai have lower emissions. 
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The spatial panel econometric model confirms a significant spatial spillover effect, 
highlighting the strong correlation and interconnectedness of agricultural carbon emis-
sions across different regions. 

To further reduce emissions, the agricultural industrial structure needs to transition 
towards a greener, low-carbon model. Currently, the traditional structure is primarily fo-
cused on planting, with limited attention to forestry and fisheries. The Beibu Gulf cities 
should leverage their local agricultural advantages, introduce new elements, and adjust 
their industrial structure to promote sustainable, green agriculture. Moreover, reducing 
pesticide, fertilizer, and diesel fuel use, while advancing low-carbon agriculture, is crucial 
for achieving energy savings and emission reductions, ensuring agriculture's long-term 
sustainability. 

Government policy and technological innovation are essential for further reducing 
agricultural carbon emissions. Local governments should attract scientific talent and mod-
ern technology to improve agricultural production efficiency. Incorporating advanced 
technologies with local methods can reduce costs and enhance mechanization. Addition-
ally, government policies should support agricultural producers in adopting modern pro-
duction techniques, ensuring both increased efficiency and lower carbon intensity in the 
agricultural process. 

Finally, inter-regional cooperation should be strengthened to promote coordinated 
development. Regions in the Beibu Gulf should share their experiences in carbon emission 
management, creating demonstration bases and developing strategies to reduce emission 
intensity. Through collaboration, regions can complement each other’s strengths, learn 
from best practices, and work together to reduce agricultural carbon emissions. 
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