

 Journal of Computer, Signal, and
System Research

Vol. 2 No. 4 (2025) 24 https://doi.org/10.71222/za6qmz24

Article

Permission Control and Security Improvement in Cross-Plat-
form Mobile Application Development
Yajing Cai 1,*

1 Alexa Identity Service, Amazon.com Inc, Seattle, Washington, 98121, USA
* Correspondence: Yajing Cai, Alexa Identity Service, Amazon.com Inc, Seattle, Washington, 98121, USA

Abstract: With the increasing demand for mobile application development, cross-platform devel-
opment architectures such as React Native and Flutter have become the mainstream, which make
rapid development and unified user experience possible. However, cross-platform application
rights management and security issues remain important challenges for developers. The purpose of
this study is to examine the permission application mechanism in cross-platform applications, ex-
plore the permission management strategy between devices and applications, and analyze the tech-
nical implementation of dynamic permission management. At the same time, it also puts forward
targeted security enhancement strategies, including but not limited to data encryption, OAuth 2.0
authentication, and defense against malicious code attacks, to provide developers with a set of prac-
tical security protection measures.

Keywords: cross-platform development; authority control; security enhancement

1. Introduction
In the field of software development for smart devices, the efficiency and mainte-

nance advantages of cross-platform technology have attracted much attention. At present,
React Native and Flutter are the most popular development frameworks in the market.
However, developers face many challenges when it comes to ensuring the security and
rights management of cross-platform software. Accurate permission control and efficient
security policies are very important to ensure user information security and prevent data
leakage. This study aims to analyze the permission application process of cross-platform
software, explore the permission definition between devices and software, and propose
effective strategies to enhance security on this basis, aiming at assisting developers to
build more secure and reliable cross-platform software.

2. Characteristics of Mainstream Cross-Platform Development Frameworks (Such as
React Native and Flutter)

In the current field of cross-platform mobile application development, React Native
and Flutter have become the two mainstream frameworks. React Native, built on JavaS-
cript and React technology, enables developers to reuse code to efficiently deploy appli-
cations across multiple platforms. Its significant advantages include high development
efficiency, strong community support, and abundant third-party library resources. How-
ever, React Native lacks in performance, especially in graphics and animation rendering,
and there may be gaps compared with native applications [1].

In contrast, Flutter uses Google's Dart programming language to generate the user
interface directly with its unique Skia graphics renderer, reducing the need to interface
with native components, which helps to improve execution efficiency and image render-
ing speed. Flutter performs well in ensuring cross-platform user interface uniformity, as
well as in graphics rendering, animation presentation, and performance metrics. Alt-
hough Flutter is relatively difficult to learn, and developers need to be proficient in the

Received: 02 May 2025

Revised: 07 May 2025

Accepted: 23 May 2025

Published: 26 May 2025

Copyright: © 2025 by the authors.

Submitted for possible open access

publication under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/license

s/by/4.0/).

https://doi.org/10.71222/za6qmz24

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 4 (2025) 25 https://doi.org/10.71222/za6qmz24

Dart language, its excellent cross-platform unity and near-native level performance make
it excellent for developing high-standard mobile applications. Table 1 below compares
React Native and Flutter's key features in terms of programming language usage, perfor-
mance, application areas, and development efficiency to help developers make decisions
based on the specific needs of the project [2].

Table 1. Comparative Analysis of React Native and Flutter.

Peculiarity React Native Flutter
Programming

language
JavaScript Dart

Performance
advantage

Limited performance, dependent
on native components

High performance, Native
Rendering Engine (Skia)

Application
scenario

Fast development, less native
function requirements

Highly customized UI, high
performance requirements

Development
efficiency

High (suitable for developers with
JS experience)

Intermediate (need to learn Dart
language)

As can be seen from Table 1, React Native has advantages in terms of development
efficiency and community support, which is suitable for fast development and teams with
a Web development background. Flutter, on the other hand, has an advantage in terms of
performance and UI consistency, which is especially suitable for projects with high user
interface and performance requirements.

3. Permission Control Mechanism for Cross-Platform Mobile Applications
3.1. Permission Request Model and Permission Type Analysis in Cross-Platform Applications

The permission application mechanism of cross-platform applications mostly relies
on the application-specific programming interfaces of the respective platforms. However,
cross-platform development frameworks such as React Native and Flutter encapsulate
these interfaces to achieve a unified interface for permission application. In the initializa-
tion stage of the program, the system puts forward the required permission request to the
user according to the functional requirements of the program. These permissions can be
roughly classified into general permissions, sensitive permissions, and special permis-
sions. Common permissions, such as Internet access, log viewing, and system configura-
tion adjustment, are usually requested at one time during application installation. Sensi-
tive permissions, such as access to the camera, microphone, and location data, are associ-
ated with user privacy or device security. These permissions often need to be requested
in real time while the application is running. In cross-platform development frameworks,
permission management must interact with system APIs in a unified manner to ensure
compatibility with the permission management mechanisms across different operating
systems [3,4]. The following Table 2 summarizes the common permission types and their
request mechanisms.

Table 2. Cross-Platform Permission Types and Their Request Mechanisms.

Permission type Give an example Request timing Request mechanism
General

authority
Network access, device

information reading
At installation One-time request at installation

Dangerous
authority

Camera, microphone,
location services

runtime
Dynamic request, user
authorization required

Special authority
Modify system Settings
and read SMS messages

Install time or
run time

Additional permissions are
usually required upon request

https://doi.org/10.71222/za6qmz24

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 4 (2025) 26 https://doi.org/10.71222/za6qmz24

As can be seen from Table 2, there are differences in request timing and implemen-
tation methods for different types of permissions. General permissions are typically re-
quested during the application deployment stage and may not require explicit user con-
firmation on some platforms; however, the specific behavior depends on the platform's
permission management model. In contrast, sensitive permissions need to be requested
in real time while the application is running. These permissions involve personal privacy
and sensitive data, requiring stricter security controls. As for special permissions, they
tend to be system-level permissions that are requested only when a particular feature is
activated. Proper permission request policies can not only enhance user experience, but
also effectively reduce redundant permission requests, thereby reducing potential secu-
rity risks [5].

3.2. Differentiation and Management Policies between Device Permission and Application
Permission

In the field of cross-platform software development, the distinction between device
permissions and application permissions is well-defined. Device permissions mainly in-
volve the permissions granted by the operating system, including the control of hardware
resources such as cameras, microphones, and storage. In contrast, application permissions
refer to the authorization required by the software at execution time, covering access to
specific functions or services, such as notification push and background execution capa-
bilities. Device permissions are often closely related to sensitive user information, which
poses a potential threat to personal privacy. Therefore, special care should be taken when
managing device permissions. For cross-platform applications, it is necessary to properly
apply for the required device permissions according to the specific permission manage-
ment system of different platforms, and strictly comply with the relevant regulations on
the use of permissions. In the implementation of permission control policy, cross-platform
applications should adopt the principle of minimum permission and permission granu-
larity control. The principle of least privilege states that an application should request only
the permissions necessary for its operation to prevent excessive or irrelevant permissions
from being improperly requested. Permission granularity control precisely defines the
scope of permissions according to specific needs, minimizing security risks associated
with over-permissioning.

3.3. Dynamic Rights Management: Rights Request and User Authorization Process
During the execution of an application program, dynamic permission control applies

for necessary permissions according to the user's operation or the specific requirements
of the program. In particular, since Android version 6.0 (API 23), the Android system has
adopted a runtime permission mechanism that forces applications to obtain explicit per-
mission from users before invoking specific functions. Cross-platform development tools
such as React Native and Flutter also follow this permission application mechanism. The
process of dynamic permission control is divided into three steps: checking permission
status, requesting permission, and handling authorization results. At the start of the pro-
gram, the application first checks whether the necessary permissions have been granted.
If not granted, it requests permission from the user. Depending on the user's response (yes
or no), the application takes subsequent actions, such as explaining the importance of the
permissions or disabling certain features. The following is a diagram of the flow of dy-
namic permission requests (Figure 1):

https://doi.org/10.71222/za6qmz24

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 4 (2025) 27 https://doi.org/10.71222/za6qmz24

Figure 1. Dynamic Permission Request Flow.

3.4. Vulnerability and Security Risk Assessment of Cross-Platform Permission Control
While the rights management features of cross-platform software can bring conven-

ience to developers, it also has security implications. On the one hand, since permission
application methods vary across operating systems, developers may overlook platform-
specific permission handling details during development, leading to excessive permission
requests or leakage of permission information. On the other hand, the possible security
flaws of the cross-platform technology framework itself can also be exploited to launch
attacks. In terms of permission control, common risks include the abuse, promotion and
bypass of permission. Abuse of permissions refers to applications that request unneces-
sary permissions that increase the likelihood of being attacked, especially when dealing
with sensitive information such as storage and contacts. Privilege escalation means that
an attacker may exploit vulnerabilities to obtain operational rights beyond their author-
ized permissions, causing malicious effects on applications or devices. Permission bypass
refers to some cross-platform frameworks failing to fully account for the security mecha-
nisms of each platform, allowing the permission checks to be bypassed, thereby increasing
the security risks to applications. To enhance the security of cross-platform software, de-
velopers need to conduct regular security audits and risk assessments to ensure the ro-
bustness of the permission management system, and strengthen permission control
through effective measures.

https://doi.org/10.71222/za6qmz24

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 4 (2025) 28 https://doi.org/10.71222/za6qmz24

4. Strategies and Technologies to Improve Cross-Platform Application Security
4.1. Data Encryption and Secure Transmission Technology

Data encryption technology is the cornerstone of cross-platform application security,
especially when data is transmitted over a network. In order to protect sensitive infor-
mation from being illegally tampered with or stolen during storage or transmission, de-
velopers need to adopt a strong encryption strategy. Common encryption strategies in
cross-platform software include symmetric encryption, asymmetric encryption, and se-
cure transport protocols (such as TLS/SSL).

In symmetric encryption mechanisms, such as AES (Advanced Encryption Standard),
the same key is used for both encryption and decryption. This method is popular for its
fast encryption speed and computational efficiency, making it suitable for encrypting
large amounts of data. However, the secret of the key is the core of security, once the key
is leaked, the security of encrypted data will be completely broken. Asymmetric encryp-
tion methods, such as RSA (Rivest-Shamir-Adleman algorithm), use a pair of keys for op-
eration, one for encryption and the other for decryption, which provides greater flexibility
for key management and is very suitable for key exchange during secure communication.

In the cross-platform interaction scenario, the key is to ensure the security of data
during transmission. Generally, the TLS protocol is used to maintain the confidentiality,
integrity, and trust of data between networks. The TLS protocol integrates symmetric en-
cryption and asymmetric encryption technologies to build a secure communication tunnel,
effectively defending against man-in-the-middle attacks, illegal data tampering, and sen-
sitive information disclosure risks. The formula of encryption technology in application is
expressed as follows:

Symmetric Encryption (AES):
𝐶𝐶 = 𝐸𝐸(𝐾𝐾,𝑃𝑃) (1)
Among them, 𝐶𝐶 indicates the ciphertext, 𝐸𝐸 indicates the encryption function, 𝐾𝐾

indicates the encryption key, and 𝑃𝑃 indicates the plaintext.
Asymmetric Encryption (RSA):
𝐶𝐶 = 𝑀𝑀𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛 (2)
Where 𝐶𝐶 is ciphertext, 𝑀𝑀 is plaintext, 𝑒𝑒 is public key, and 𝑛𝑛 is modular.
TLS encryption:
Session Key = 𝐸𝐸(𝐾𝐾server，𝐾𝐾client) (3)
TLS uses the above encryption algorithms to encrypt communication data through

negotiated and shared session keys.
Through these encryption methods, cross-platform applications can ensure the secu-

rity of data during storage and transmission, preventing data leakage and malicious tam-
pering.

4.2. Authentication and Authorization Mechanism Based on OAuth 2.0 and JWT
In cross-platform applications, authentication and authorization are key technologies

to ensure user information security and data access control. OAuth 2.0, as a popular au-
thorization protocol for network applications, is becoming more and more important, es-
pecially when third-party applications need to obtain user resource rights. OAuth 2.0 uses
the token system to enable users to authorize third-party applications to access their re-
sources on different platforms without disclosing their passwords, greatly enhancing se-
curity.

JSON Web Token (JWT), as a token type frequently used in the OAuth 2.0 protocol,
plays a central role in the process of information transfer between the client and the server.
JWT consists of three parts: header, payload and signature, of which the signature part is
responsible for ensuring the integrity of the information transmission process and the re-
liability of the source. JWT is widely used to store user authentication information and
permission data, which not only improves the security of the system, but also brings
higher scalability and flexibility.

https://doi.org/10.71222/za6qmz24

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 4 (2025) 29 https://doi.org/10.71222/za6qmz24

The combination of OAuth 2.0 and JWT enables flexible and secure authentication
and authorization control for cross-platform applications. The OAuth 2.0 authorization
code flow and the JWT token generation formula are as follows:

Access Token = OAuth 2.0 Authorization Code Flow(𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝑛𝑛𝐶𝐶, 𝑆𝑆𝑒𝑒𝑆𝑆𝑆𝑆𝑒𝑒𝑆𝑆) (4)
The construction formula of JWT is:
𝐽𝐽𝐽𝐽𝐽𝐽 = 𝐵𝐵𝐵𝐵𝐵𝐵𝑒𝑒64(𝐻𝐻𝑒𝑒𝐵𝐵𝑚𝑚𝑒𝑒𝑆𝑆) + " ⋅ " + 𝐵𝐵𝐵𝐵𝐵𝐵𝑒𝑒64(𝑃𝑃𝐵𝐵𝑃𝑃𝐶𝐶𝑚𝑚𝐵𝐵𝑚𝑚) + " ⋅ " + 𝐻𝐻𝑀𝑀𝐻𝐻𝐶𝐶 −

𝑆𝑆𝐻𝐻𝐻𝐻256(𝐵𝐵𝐵𝐵𝐵𝐵𝑒𝑒64(𝐻𝐻𝑒𝑒𝐵𝐵𝑚𝑚𝑒𝑒𝑆𝑆) + ⋅ + 𝐵𝐵𝐵𝐵𝐵𝐵𝑒𝑒64(𝑃𝑃𝐵𝐵𝑃𝑃𝐶𝐶𝑚𝑚𝐵𝐵𝑚𝑚),𝑆𝑆𝑒𝑒𝑆𝑆𝑆𝑆𝑒𝑒𝐶𝐶) (5)
The combination of these two protocols gives cross-platform applications the flexi-

bility to manage user rights and avoid unauthorized access while ensuring user identity.

4.3. Preventing Malicious Attacks: Prevents Security Threats Such as XSS and SQL Injection
When applications are used across platforms, they often encounter various security

risks, especially XSS attack and SQL injection attack. By embedding malicious scripts into
applications, XSS attacks enable attackers to illegally obtain users' private data or even
perform illegal operations without authorization. The key to effective defense against XSS
attacks is to carefully screen and verify the data submitted by users, while ensuring that
the output is properly encoded (for example, HTML encoding) to prevent the execution
of malicious scripts.

By embedding harmful SQL commands into database query statements, attackers
can evade security checks and achieve unauthorized access or tampering of database in-
formation. The key strategy to block such attacks is to adopt parameterized queries or
preprocessed statements, even if the malicious user enters illegal data, it can not destroy
the basic structure of the SQL statement.

In order to protect against multiple security threats such as XSS attacks and SQL in-
jection, software developers must conduct strict screening and verification of user submit-
ted data. Here are some specific defenses:

1) Implement a strict whitelist policy for user input to mask all unauthorized char-
acters.

2) Perform HTML coding on all dynamically generated output content to prevent
the implantation of malicious scripts.

3) Parameterized queries are preferred rather than directly concatenating SQL
statements to reduce the risk of SQL injection.

The security formula for preventing XSS attacks can be expressed as:
Sanitized Input = sanitize(𝐼𝐼𝑛𝑛𝐼𝐼𝐼𝐼𝐶𝐶) (6)
The best practice to prevent SQL injection is to use parameterized queries:
Safe Query = Prepared Statment(𝐼𝐼𝑛𝑛𝐼𝐼𝐼𝐼𝐶𝐶) (7)
These protection technologies can effectively reduce the risk of malicious attacks

faced by cross-platform applications and ensure application security.

4.4. Security Optimization for Cross-Platform Applications
In addition to encryption and authentication techniques, there are several strategies

to enhance the security of cross-platform software. One common optimization technique
is code obfuscation, which converts source code into an incomprehensible form and effec-
tively prevents criminals from reverse-engineering critical code or stealing critical data.
Code obfuscation not only increases the complexity of cracking, but also provides an ad-
ditional safeguard for the security of the application.

Multi-factor authentication (MFA) is an enhanced authentication technology that re-
quires users to provide additional authentication factors, such as SMS verification codes
and biometrics, in addition to entering a password. Even if the password information is
stolen, it is difficult for an attacker to hack into an account without multi-step verification.
This multi-authentication approach significantly improves the security of the authentica-
tion process. Ongoing security checks and fixes for known defects are also key ways to
improve application security. Software developers should periodically check the security

https://doi.org/10.71222/za6qmz24

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 4 (2025) 30 https://doi.org/10.71222/za6qmz24

of applications to identify possible security risks and take corrective measures quickly. In
this way, developers can effectively defend against hackers targeting known vulnerabili-
ties and ensure the security and stability of applications.

Code obfuscation technology improves the difficulty of cracking, effectively prevent-
ing attackers from stealing key parts of programs through reverse engineering; Multi-fac-
tor authentication strengthens the stability of identity verification and reduces the risk
caused by password leakage. Systematic periodic reviews and bug fixes ensure that cross-
platform software can effectively withstand evolving security challenges throughout its
lifecycle. With these diversified security strengthening measures, cross-platform software
not only maintains the security of user information and privacy, but also enhances the
protection against potential infringements, ensuring the long-term safe operation of the
software.

5. Conclusion
In the context of the current popularity of cross-platform mobile applications, ensur-

ing the security of these applications has become a key challenge that developers must
face. This paper discusses several strategies and techniques for cross-platform applica-
tions in terms of permission management and security enhancement, including data en-
cryption, authentication mechanism, anti-malicious intrusion measures and application
security optimization approaches. By implementing effective encrypted transport, using
authentication technologies such as OAuth 2.0 and JWT, and strengthening protection
against risks such as XSS attacks and SQL injection, application security can be signifi-
cantly enhanced. At the same time, regular security reviews and timely patching of secu-
rity vulnerabilities are the basis for ensuring long-term stable application security. With
the rapid advancement of technology, the security protection of cross-platform applica-
tions is an area that requires constant attention and innovation in order to effectively re-
spond to increasingly complex security threats and protect users' privacy and data from
being compromised.

References
1. M. Orosoo, I. Goswami, F. R. Alphonse, G. Fatma, M. Rengarajan, B. K. Bala, et al., "Enhancing Natural Language Processing in

Multilingual Chatbots for Cross-Cultural Communication," in 2024 5th Int. Conf. Intell. Commun. Technol. Virtual Mobile Netw.
(ICICV), pp. 127–133, Mar. 2024, doi: 10.1109/ICICV62344.2024.00027.

2. M. Tan, A. Liu, X. Wang, S. Shang, N. Wang, and X. Du, "A cross-domain access control mechanism based on model migration
and semantic reasoning," KSII Trans. Internet Inf. Syst., vol. 18, no. 6, pp. 1599–1618, 2024, doi: 10.3837/tiis.2024.06.010.

3. B. Seo, "A Case Study of Combining Two Cross-platform Development Frameworks for Storybook Mobile App," KSII Trans.
Internet Inf. Syst., vol. 17, no. 12, pp. 3345–3363, 2023, doi: 10.3837/tiis.2023.12.007.

4. A. A. Muhammad, A. Soliman, H. Zayed, A. H. Yousef, and S. Selim, "Automated library mapping approach based on cross-
platform for mobile development programming languages," Softw. Pract. Exper., vol. 54, no. 5, pp. 683–703, 2024, doi:
10.1002/spe.3281.

5. C. L. Chang, Y. L. Chen, and J. S. Li, "A cross-platform recommendation system from Facebook to Instagram," Electron. Libr.,
vol. 41, no. 2/3, pp. 264–285, 2023, doi: 10.1108/EL-09-2022-0210.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-
thor(s) and contributor(s) and not of GBP and/or the editor(s). GBP and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.71222/za6qmz24
http://doi.org/10.1109/ICICV62344.2024.00027
http://doi.org/10.3837/tiis.2024.06.010
http://doi.org/10.3837/tiis.2023.12.007
http://doi.org/10.1002/spe.3281
http://doi.org/10.1108/EL-09-2022-0210

	1. Introduction
	2. Characteristics of Mainstream Cross-Platform Development Frameworks (Such as React Native and Flutter)
	3. Permission Control Mechanism for Cross-Platform Mobile Applications
	3.1. Permission Request Model and Permission Type Analysis in Cross-Platform Applications
	3.2. Differentiation and Management Policies between Device Permission and Application Permission
	3.3. Dynamic Rights Management: Rights Request and User Authorization Process
	3.4. Vulnerability and Security Risk Assessment of Cross-Platform Permission Control

	4. Strategies and Technologies to Improve Cross-Platform Application Security
	4.1. Data Encryption and Secure Transmission Technology
	4.2. Authentication and Authorization Mechanism Based on OAuth 2.0 and JWT
	4.3. Preventing Malicious Attacks: Prevents Security Threats Such as XSS and SQL Injection
	4.4. Security Optimization for Cross-Platform Applications

	5. Conclusion
	References

